

© 2012

5 Levels of Planning Adapted from “5 Levels of Agile
Planning” by Hubert Smits

Daily
Standup

Iteration
Plan

Release
Plan

Product
Roadmap

Product
Vision

© 2012

Iteration Plan
 Define scope as a team
 Define a clear understanding of “done”
 Plan just enough to commit

Daily
Standup

Iteration
Plan

Release
Plan

Product
Roadmap

Product
Vision

© 2012

Roles
 Product Owner
 Scrum Master
 Team Member

© 2012

Product Owner
 Prioritizes the backlog
 Communicates what is important … and what is not
 Is a proxy for the customer and other stakeholders

© 2012

Scrum Master
 Responsible for the process
 Facilitates agile meetings
 Helps to remove road blocks

© 2012

Team Member
 Signs up for work
 Asks questions
 Collaborates with others
 Communicates progress / blocking issues
 Makes it happen

© 2012

Before you Start
 Well Groomed Product Backlog

 Prioritized
 Estimated

 Iteration Theme/Goal

Estimated Prioritized

© 2012

The Backlog
 A ranked list of stories
 What is a story?

 A scenario that we must do work to implement which
results in business value

 Typically in the form of: “As a <type of user>, I want
<feature> so that <business value>”

 Good stories meet the INVEST criteria

© 2012

Exercise: Create a Backlog
 Goal: To create a backlog for a web site that sells books

(competitor: Amazon)
 Roles: Product Owner, Stakeholders
 Assumptions:

 Your team is focused on the web application
 You have just enough in place to show a hello world screen
 You have the ability to check in code, do a build and deploy

 Deliverables:
 Prioritized list of things to do
 Finer grained at the top (doable in a couple of weeks)
 Larger grained at the bottom

© 2012

Sample Solution
 Find book by title / author
 Buy book via PayPal
 Show picture / details on book
 Show top selling books
 Show book reviews
 Remember user info
 Show user reviews
 Show other books by author
 Show related books

© 2012

Story Points
 Identify a medium sized story (that you would take on

in an iteration) that is well understood; call it a 5
 Now estimate other stories relative to that
 Is it about the same, ½ as difficult, twice as difficult?
 Use Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21
 If bigger than that or if too hard to estimate, split the

story

© 2012

Why Story Points?
 Time estimates

 Vary by person
 Encourage padding
 Tend to grow stale

 Story points
 More consistent from person to person
 Not a commitment to time frame
 Don’t change as much
 Easier to estimate relative size

© 2012

A Sizing Session
 Who

 Product Owner
 Scrum Master
 Team implementing the story

 How
 Take highest priority story
 Product owner explains the story
 Team asks questions
 All team members vote on size at once
 High and low explain why
 Revote until consensus

© 2012

Epics
 Some stories are large
 They’re too big for a team to take on in an iteration
 Stories far down the backlog can be left at this

level

© 2012

Splitting a Story
 When splitting a story, each “slice” should add incremental

user value
 Reprioritize and resize after splitting

© 2012

Splitting Example
 Buy a Book

 As a book purchaser, I want to buy a book so that I can enjoy reading it

Might become

 View List of Books
 As a book purchaser, I want to see a list of books that I can purchase so that I

can make my purchasing decision
 Buy Book w/ Credit Card

 As a book purchaser, I want to purchase a selected book via credit card so that I
can enjoy reading it

 See Book Details
 As a book purchaser, I want to see details about a book so that I can determine if

I want to buy it
 See Other User Comments

 As a book purchaser, I want to see comments from other users so that I can
better determine if I want to buy it

© 2012

What About Risk?
 If multiple approaches and each has the same cost

 No discussion necessary to size

 If multiple approaches and each has a different cost
 Discuss enough to decide which is most likely
 Use that for sizing
 Resize if assumptions change

 Dependencies by themselves should not affect size

© 2012

Defects

 The most important thing in an iteration is anything that would
prevent you from shipping

 Defects can be represented as stories or as tasks on the stories
that they impact

 The goal is to keep up with defects as you go and to not allow
them to build up

 Don’t give points for defects; this keeps your velocity honest

© 2012

A Typical Iteration Planning Session
 Discuss logistics
 Review iteration goals
 For each story (in Priority Order):

 Understand it
 Task it out

 Stop when “full” and commit

Typical Duration: 1-4 hours

Attendees:
•Product owner
•Scrum master
•Delivery team

Materials:
•Stories (cards or online)
•Task planning material (cards,
whiteboard, online)

•Planning/estimation materials (e.g.
planning poker cards)

© 2012

Discuss Logistics
 Review Historical Velocity
 Review Team Availability

 Holidays / Vacations
 Meetings
 L3 Support, outside commitment, etc

 Review the Definition of Done

© 2012

Definition of Done
 You need to define for your environment
 Definition will evolve over time
 Example:

 Unit tests written and passed
 Acceptance tests automated and passed
 User facing documentation written
 Checked in to the build
 No defects introduced

© 2012

Staying Releasable
 Goal: Could release after any iteration
 Reality: Ability to do this will evolve over time

 Staying releasable gives you the ability to more easily
change direction / take on new things

 It also tends to improve quality
 And predictability

© 2012

Review Iteration Goal(s)
 At a high level, what are we trying to accomplish this

iteration

 Examples:
 Improve reporting
 Improve performance
 Get ready for beta

© 2012

Understand the Story
 Discuss the story
 Discuss why it is important
 Elaborate on acceptance criteria/tests
 Make priority adjustments
 Break down as needed

Do we need to answer this in
order to commit?

© 2012

Acceptance Criteria
 What is required for the success of this story?
 Typically determined / refined at iteration planning

jointly between product owner, dev, QA, writers, etc.

 Examples
 Must be able to add a new user given a login, name and

email address
 Must generate random password
 Must send password to email address
 Must be able to log in with new login / password

© 2012

Task out the Story

 Define tasks

 Estimate the work involved

 Double check ability to commit

The Product Owner can help
in avoiding less valuable work

© 2012

Tasks
 What do we need to do to accomplish this story?
 Defined by the team in iteration planning
 Refined throughout the iteration
 Keep to a day or less

 Examples
 Implement add user screen
 Send email with credentials
 Test ability to add a user and log in

© 2012

Which Is It?
 Is it a goal (something worth

achieving by itself)?

 Is it a requirement that must
be met?

 Is it something that you do in
order to accomplish your goal?

Story

Acceptance
Criteria

Task

© 2012

Hold Off On Names
 Keeps everyone focused on all the tasks, not just theirs
 Encourages team commitment
 Within the iteration, encourages focus on priorities
 And teamwork

© 2012

Repeat
 Until the team cannot take on more
 Split stories as necessary

© 2012

Commit
 Everyone agrees the iteration is doable
 Use disagreement and uneasiness in team members to

drive out hidden risks, tasks, and issues
 Drive agreement with a fist of five

 Absolutely, no question
 I think this is good and will make it happen
 I can support this
 I’m uneasy about this and think we need to talk about it more
 Let’s continue discussing this idea in the parking lot

© 2012

Effective Meetings
 Everyone should be focused on the task at hand

 No working on laptops

 Every minute should be valuable
 If not, figure out how to make it so

Tools

© 2012

Exercise: Iteration Planning
 Goal: Commit what the team can accomplish in the next

iteration

 Roles: Product Owner, Scrum Master, Team Members

 Assumptions
 Make assumptions about your team size and velocity

 Deliverables:
 Stories
 Acceptance Criteria
 Tasks

Do you believe in your result?

© 2012

Sample Solution
 Find book by title / author – 5

 Acceptance Criteria
 Home page has fields to search by title and/or author
 On submit, user shown books that match the criteria
 If no matches, say “No matching books were found”

 Tasks
 Create template HTML for site pages - 2
 Create search page - 4
 Verify search works - 2

© 2012

Speeding It Up
 Before planning meeting:

 Stories sized
 First cut at acceptance criteria
 First cut at tasks
 Dependencies understood

 During the meeting:
 Be wary of tools
 Do we need to go into this now?

© 2012

Velocity
 Now that stories have sizes, you can track how many

points you typically get done in an iteration
 Only count points for stories that get accepted in the

iteration
 You can now use this to predict future completion

rates

© 2012

Velocity Example
 Iteration 1: Took on 25 points, got 15 accepted
 Iteration 2: Took on 22 points, got 25 accepted
 Iteration 3: Took on 22 points, got 19 accepted

 Velocity = (15 + 25 + 19) / 3 = around 20 points

© 2012

Story Points Across Teams
 To get teams in the same ballpark, pick a baseline story

 Each team should understand the complexity
 Choose a medium size story
 Call it a ‘5’
 All other stories are relative to it

 Don’t compare velocity
 Used by a team to evaluate itself
 If others use it for evaluation, it will be gamed and

become useless

© 2012

Release Planning Deliverables
 Plan for each Iteration
 Assumptions
 Dependencies
 Risks

 Are things synched up across teams?
 Are you attacking the most important stories?
 Does the team believe in the results?

© 2012

Coordinating Teams
 Simplest if one team has the skills to take on an item

by themselves

 If not, try to minimize the gap
 Within the same iteration is ideal

 Touch base before and after iteration planning

 Daily scrum of scrum meetings can help

© 2012

Kanban
 Instead of planning it all up front, you can pull things in as

you go

 Keep iterations (Scrumban) or not (pure Kanban)

 Advantages
 More flexibility (great for start ups and support)

 Disadvantages
 Less predictability
 Harder to coordinate

© 2012

Resources
Walter Bodwell

Planigle
wbodwell@planigle.com

Twitter: @wbodwell
www.planigle.com

www.walterbodwell.com
www.agileaustin.org

