


© 2017

About Me

 Doing agile since 1999

 Start ups / Enterprises

 Planigle - Consulting and Training



© 2017

Agenda
 Small Stories

 Why small?

 Barriers

 How do we make it small?

 Small Releases

 Why small?

 Barriers

 How do we make it small?



© 2017

Why Small Stories?
 Easier to estimate
 Easier to ensure quality
 Easier to track down issues
 Harder to get lost
 Enables earlier testing
 More opportunity for feedback
 More opportunity to pivot
 More visibility
 Less risk
 Less at risk
 Less variance

Simplicity--the art of 
maximizing the amount

of work not done--is 
essential



© 2017

Not Too Early
 Small stories at the top

 Bigger stories further down

 Keep backlog maintainable



© 2017

How Small Should Stories Be?
 At least 5 - 9 stories / iteration

 Ideally 0.5 - 3 days / story

 Establish threshold for iteration



© 2017

Barriers to Small Stories
 Get past all or nothing – What is the next step?

 Look at team practices – Do they still make sense?

 Get used to breaking stories down



© 2017

Creating Smaller Stories
 When splitting a story, each “slice” should add incremental 

user value

 Reprioritize and resize after splitting



© 2017

Who Does the Splitting?
 Product Owner

 Team Members



© 2017

More on Splitting
 Do:

 Split vertically (end to end)
 Ensure each story adds value / allows feedback
 Ensure each story is releasable

 Don’t:
 Split horizontally (DB, Middle Tier, UI)
 Split Dev vs. QA
 Introduce work that will need to be backed out if you don’t 

continue

UI

Middle Tier

DB

S
l
i
c
e



© 2017

Questions to Ask Yourself
 Does this meet our size threshold?

 Is this the next most important part?

 Are any aspects lower priority?

 How will we test this?

 Could we release this?

 If we go no farther, will we have to back something 
out?



© 2017

Splitting Example - Wizard
 Complex wizard:

Might become:

 Essential part of wizard (first half of page 1)

 Refinement (rest of page 1 plus page 3)

 Refinement (page 2)



© 2017

Splitting Example – Buy a Book
 Buy a Book

Might become:

 View List of Books

 Buy Book w/ Credit Card

 See Book Details

 See Other User Comments



© 2017

Other Ideas for Splitting
 Market segments
 Acceptance criteria
 CRUD
 Happy path first
 Simple version first

 Rules
 Data
 UI

 Manual vs. automated
 Buy vs. build
 Transient vs. persistent
 Make it work, make it work fast
 Spike



© 2017

Exercise
 Get into groups of 3-4

 Each Person:

 Identify 1 or 2 stories that are too big

 Identify any team constraints

 As a group:

 Identify how you might split the story(s)



© 2017

Dependencies Between Stories
 Order matters

 Ex. Credit card

 If one story for each type, first is most difficult

 Could split into First card and then All x Cards



© 2017

Why Small Releases?
 Earlier revenue opportunity

 More opportunity for feedback

 More opportunity to pivot

 More responsive

 More visibility

 Clearer focus

 Less at risk

 Less disruption

 Easier to predict

 Easier to track down issues

 Easier to defer to next release

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23

Revenue By Release Length

3 Month Release 6 Month Release

Our highest priority is to 
satisfy the customer 
through early and 

continuous delivery of 
valuable software



© 2017

How Small Should Releases Be?
 Depends on your context

 Annually?

 Semi-annually?

 Quarterly?

 Monthly or Semi-Monthly?

 Daily?

 Continuously?

Deliver working software 
frequently, from a

couple of weeks to a couple of 
months, with a

preference to the shorter 
timescale



© 2017

Barriers to Small Releases
 Things only done once / release

 Difficulty of deployment

Definition of 
Done

Definition of 
Releasable

!=



© 2017

Creating Smaller Releases
 Smaller Epics

 Reduce cost of the release

 Releasable throughout

 Easy to deploy / install

 More communication

 Limited / internal release

 Market aggregation of releases



© 2017

Example: Code Rewrite
 Both versions available

 Focus on satisfying market segments

 Most critical / often used features first

 Much easier to validate / less risk



© 2017

References
 Story Slicing: How Small is Too Small -

https://agilepainrelief.com/notesfromatooluser/2010/09/st
ory-slicing-how-small-is-enough.html#.WQJDhNIrKUk

 20 Ways to Split a Story -
http://xp123.com/xplor/xp0512/index.shtml

 Patterns for Splitting User Stories -
http://agileforall.com/patterns-for-splitting-user-stories/

 Story Splitting Flowchart - http://agileforall.com/wp-
content/uploads/2012/01/Story-Splitting-Flowchart.pdf

 Frequent Small Releases -
http://www.agileacademy.com.au/agile/sites/default/files/
Frequent%20Small%20Releases%202011.pdf

https://agilepainrelief.com/notesfromatooluser/2010/09/story-slicing-how-small-is-enough.html#.WQJDhNIrKUk
http://xp123.com/xplor/xp0512/index.shtml
http://agileforall.com/patterns-for-splitting-user-stories/
http://agileforall.com/wp-content/uploads/2012/01/Story-Splitting-Flowchart.pdf
http://www.agileacademy.com.au/agile/sites/default/files/Frequent Small Releases 2011.pdf


© 2017

Resources
Walter Bodwell

Planigle
wbodwell@planigle.com

Twitter: @wbodwell
www.planigle.com

www.walterbodwell.com

mailto:wbodwell@planigle.com
http://www.planigle.com/
http://www.walterbodwell.com/

