

© 2012

What Is Agile?
 Agile is a group of software development

methodologies
 Scrum
 Extreme Programming (XP)
 Lean
 Etc.

 Key Characteristics:
 Small increments
 Adaptive to change
 Collaborative

© 2012

Defining Agility
 Individuals and interactions over processes and tools

 Encourage engagement between functional areas
 Avoid using documents to hand off information

 Working software over comprehensive documentation
 Focus on incrementally attacking the problem
 Stay releasable

© 2012

Defining Agility
 Customer collaboration over contract negotiation

 Prioritize based on business value
 Work together to ensure that value is maximized

 Responding to change over following a plan
 Plan just enough (no more than necessary)
 Defer to the last responsible moment
 Stay flexible and leverage what you’ve learned

© 2012

Why Do It?
 It results in better software

 Higher productivity (you get what you need quicker)
 Higher quality
 More customer satisfaction
 More visibility
 Better morale

© 2012

Roles
 Product Owner
 Scrum Master
 Team Member

© 2012

Product Owner
 Prioritizes the backlog
 Communicates what is important … and what is not
 Is a proxy for the customer

© 2012

Scrum Master
 Responsible for the process
 Facilitates agile meetings
 Helps to remove road blocks

© 2012

Team Member
 Signs up for work
 Asks questions
 Collaborates with others
 Communicates progress / blocking issues
 Makes it happen

© 2012

What Does It Look Like?
 Backlog
 Release

 Release Planning
 Iterations (1-4 weeks long)

 Iteration Planning
 Daily standup
 Demo
 Iteration Retrospective

 Release Retrospective

© 2012

The Backlog
 A ranked list of stories
 What is a story?

 A scenario that we must do work to implement which
results in business value

 Typically in the form of: “As a <type of user>, I want
<feature> so that <business value>”

 Good stories meet the INVEST criteria

© 2012

Example
Post a Job
 As a recruiter I want to be able to post a job to the web

site so that I can generate interest in the position.

© 2012

Why Prioritize?

© 2012

Prioritization Doesn’t Stop
 The product owner re-prioritizes after each iteration

 We’ve learned more about the business
 Let’s take advantage of that

 The further down the list something is, the less
defined it will be and the less important it is to
prioritize precisely

© 2012

What Does an Iteration Look Like?

1 week

to 1 month

24 hours

Product Backlog
As prioritized by Product Owner

Iteration Backlog

Backlog tasks
expanded
by team

Potentially Shippable
Product Increment

Daily Stand up Meeting
• Done since last meeting
• Will do for next meeting
• Obstacles

Iteration
Iteration Planning Meeting
• Review Product Backlog
• Define Iteration Goals
• Estimate Iteration Backlog
• Commit

Demo
Show off what you’ve done

Retrospective
Inspect and Adapt

Vision and
Release
Plan

© 2012

Iteration Planning
 Define scope as a team
 Define a clear understanding of “done”
 Plan just enough that you can commit

© 2012

Before you Start
 Well Groomed Product Backlog

 Prioritized
 Estimated

 Iteration Theme/Goal

Estimated Prioritized

© 2012

A Typical Iteration Planning Session
 Discuss Logistics
 Review iteration goals
 For each story (in Priority Order):

 Understand it
 Task it out

 Stop when “full” and commit

Typical Duration: 1-4 hours

Attendees:
•Product owner
•Scrum master
•Delivery team

Materials:
•Stories (cards or online)
•Task planning material (cards,
whiteboard, online)

•Planning/estimation materials (e.g.
planning poker cards)

© 2012

Discuss Logistics
 Review Historical Velocity
 Review Team Availability

 Holidays / Vacations
 Meetings
 L3 Support, outside commitment, etc

 Review the Definition of Done

© 2012

Review Iteration Goal(s)
 At a high level, what are we trying to accomplish this

iteration

 Examples:
 Improve reporting
 Improve performance
 Get ready for beta

© 2012

Understand the Story
 Discuss the story
 Discuss why it is important
 Elaborate on acceptance criteria/tests
 Make priority adjustments
 Break down as needed

© 2012

Task out the Story

 Define tasks

 Estimate the work involved

 Double check ability to commit

The Product Owner can help
in avoiding less valuable work

© 2012

Repeat
 Until the team cannot take on more
 Split stories as necessary

© 2012

Commit
 Everyone agrees the iteration is doable
 Use disagreement and uneasiness in team members to

drive out hidden risks, tasks, and issues
 Drive agreement with a fist of five

 Absolutely, no question
 I think this is good and will make it happen
 I can support this
 I’m uneasy about this and think we need to talk about it more
 Let’s continue discussing this idea in the parking lot

Managing your Tasks

© 2012

Daily Standup
 What did I do yesterday?
 What will I do today?
 What’s blocking me?

Quick

High Value

Parking Lot

For the team

© 2012

Demo
 Show off what you got “done” in the iteration
 Should be from the user’s perspective
 No slides
 No code
 Just working software

If a customer could attend your demo,
you’re doing it right

© 2012

Retrospective
 Review the process over the last iteration
 What went well?
 What went poorly?
 How can we do things better?
 Take the top 1-3 items and make sure you make

progress on them in the next iteration

Improve

© 2012

Estimating
 Identify a medium sized story that is well understood;

call it a 5
 Now estimate other stories relative to that
 Is it about the same, ½ as difficult, twice as difficult?
 Use Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21
 If bigger than that or if too hard to estimate, split the

story
 Tackle as a team; Planning poker can help

(www.planningpoker.com)

© 2012

Velocity
 Now that stories have sizes, you can track how many

points you typically get done in an iteration
 Only count points for stories that get accepted in the

iteration
 You can now use this to predict future completion

rates

© 2012

Structuring Teams
 It is preferable to have each team have the ability to

complete its work by itself
 In other words, instead of a team per component, have

teams with members who have knowledge of each
component that will need to change to deliver
something

© 2012

Divvying Things Up
 Your goal is to divvy things up so that teams are

working on items of around the same priority

Bad Good

If each team able
to get 3 blocks in
the release,
the highlighted
stories won’t
make it

By better distributing
stories amongst the
teams, look which
stories won’t make it

© 2012

Dependencies
 Approaches (go with the first one you can):

 Structure the teams so that a single team can solve the
problem end to end

 Do the work within the same iteration
 Implement the service and then use it
 Stub out the service and implement it later

 Make sure the dependent teams
(including external ones) are represented at
release planning

© 2012

Release Planning
 Kick off / Overview
 Break Out Sessions
 Review Results

© 2012

Release Planning Deliverables
 Plan for each Iteration
 Assumptions
 Dependencies
 Risks

© 2012

Release Planning Wrap Up
 Go through each iteration for each team
 Are things synched up across teams?
 Are you attacking the most important stories?
 Does the team believe in the results?

© 2012

After The Meeting
 Capture the results in your tool of choice
 Update after each iteration

© 2012

Anti-Goals of Release Planning

Release Planning is not a commitment!

© 2012

Communicating the Future
 Themes give you room to be flexible

 We know we’re going to do something in this area
 We’ll decide as we go how much

 If a customer is asking about a particular feature, you can
get into a discussion of priorities
 Well, that’s important, but we think this and this are more

important, what do you think?

 Demos are a potential opportunity to get a customer
involved

 Smaller, incremental releases generate feedback on what to
dig into in more detail

© 2012

Tracking the Release

Managing Risk
Waterfall Agile

 Time, scope and resources
“fixed”

 Changing one affects the
others as well as quality

 Manage the plan
 Try to minimize change

 Time, resources and quality
fixed

 Changing time or resources
affects scope

 Manage the priorities
 Change as you learn more

© 2012

Life in an Iteration
 Once in an iteration, scope is fixed
 Do the work in small increments
 Work closely with others
 It isn’t done until it is really done
 If it doesn’t add value, don’t do it (or minimize)
 Leave decisions to the last responsible moment

It is a team effort

© 2012

Self Organizing Teams
 The team members know how they can best

contribute
 They figure out how to divvy the work up / attack the

problem
 The scrum master facilitates and is part of the team

© 2012

Feedback is key
 Do a little
 Get feedback
 Respond to feedback by doing a little more
 Automation helps decrease time to get feedback

 Nightly/continuous build
 Unit tests
 Acceptance tests

© 2012

Agile Documentation
 Keep to the minimal responsible amount of doc

 No more than you need at any point in time
 Just enough to understand dependencies and mitigate

risks

 Do you need this now?
 If not, try to reduce or eliminate it

 Wiki’s work well for collaborative design

© 2012

Management Is Not Enough!
 Engineering practices must change

 Avoid specialization
 Keep design simple and refactor as needed (YAGNI)
 Create good automated regression tests
 Integrate frequently
 Peer review

 Consider
 Test Driven Development (or Behavior Driven Development)
 Pair Programming
 Co-location
 Dedicated team members

© 2012

Staying Releasable
 Goal: Could release after any iteration
 Reality: Ability to do this will evolve over time

 Staying releasable gives you the ability to more easily
change direction / take on new things

 It also tends to improve quality
 And predictability

© 2012

Definition of Done
 You need to define for your environment
 Definition will evolve over time
 Example:

 Unit tests written and passed
 Acceptance tests automated and passed
 User facing documentation written
 Checked in to the build

© 2012

Questions?

Walter Bodwell
Planigle

wbodwell@planigle.com
Twitter: @wbodwell
www.planigle.com

www.walterbodwell.com

