

© 2012

What Is Agile?
 Agile is a group of software development

methodologies
 Scrum
 Extreme Programming (XP)
 Lean
 Etc.

 Key Characteristics:
 Small increments
 Adaptive to change
 Collaborative

© 2012

Defining Agility
 Individuals and interactions over processes and tools

 Encourage engagement between functional areas
 Avoid using documents to hand off information

 Working software over comprehensive documentation
 Focus on incrementally attacking the problem
 Stay releasable

© 2012

Defining Agility
 Customer collaboration over contract negotiation

 Prioritize based on business value
 Work together to ensure that value is maximized

 Responding to change over following a plan
 Plan just enough (no more than necessary)
 Defer to the last responsible moment
 Stay flexible and leverage what you’ve learned

© 2012

Why Do It?
 It results in better software

 Higher productivity (you get what you need quicker)
 Higher quality
 More customer satisfaction
 More visibility
 Better morale

© 2012

Roles
 Product Owner
 Scrum Master
 Team Member

© 2012

Product Owner
 Prioritizes the backlog
 Communicates what is important … and what is not
 Is a proxy for the customer

© 2012

Scrum Master
 Responsible for the process
 Facilitates agile meetings
 Helps to remove road blocks

© 2012

Team Member
 Signs up for work
 Asks questions
 Collaborates with others
 Communicates progress / blocking issues
 Makes it happen

© 2012

What Does It Look Like?
 Backlog
 Release

 Release Planning
 Iterations (1-4 weeks long)

 Iteration Planning
 Daily standup
 Demo
 Iteration Retrospective

 Release Retrospective

© 2012

The Backlog
 A ranked list of stories
 What is a story?

 A scenario that we must do work to implement which
results in business value

 Typically in the form of: “As a <type of user>, I want
<feature> so that <business value>”

 Good stories meet the INVEST criteria

© 2012

Example
Post a Job
 As a recruiter I want to be able to post a job to the web

site so that I can generate interest in the position.

© 2012

Why Prioritize?

© 2012

Prioritization Doesn’t Stop
 The product owner re-prioritizes after each iteration

 We’ve learned more about the business
 Let’s take advantage of that

 The further down the list something is, the less
defined it will be and the less important it is to
prioritize precisely

© 2012

What Does an Iteration Look Like?

1 week

to 1 month

24 hours

Product Backlog
As prioritized by Product Owner

Iteration Backlog

Backlog tasks
expanded
by team

Potentially Shippable
Product Increment

Daily Stand up Meeting
• Done since last meeting
• Will do for next meeting
• Obstacles

Iteration
Iteration Planning Meeting
• Review Product Backlog
• Define Iteration Goals
• Estimate Iteration Backlog
• Commit

Demo
Show off what you’ve done

Retrospective
Inspect and Adapt

Vision and
Release
Plan

© 2012

Iteration Planning
 Define scope as a team
 Define a clear understanding of “done”
 Plan just enough that you can commit

© 2012

Before you Start
 Well Groomed Product Backlog

 Prioritized
 Estimated

 Iteration Theme/Goal

Estimated Prioritized

© 2012

A Typical Iteration Planning Session
 Discuss Logistics
 Review iteration goals
 For each story (in Priority Order):

 Understand it
 Task it out

 Stop when “full” and commit

Typical Duration: 1-4 hours

Attendees:
•Product owner
•Scrum master
•Delivery team

Materials:
•Stories (cards or online)
•Task planning material (cards,
whiteboard, online)

•Planning/estimation materials (e.g.
planning poker cards)

© 2012

Discuss Logistics
 Review Historical Velocity
 Review Team Availability

 Holidays / Vacations
 Meetings
 L3 Support, outside commitment, etc

 Review the Definition of Done

© 2012

Review Iteration Goal(s)
 At a high level, what are we trying to accomplish this

iteration

 Examples:
 Improve reporting
 Improve performance
 Get ready for beta

© 2012

Understand the Story
 Discuss the story
 Discuss why it is important
 Elaborate on acceptance criteria/tests
 Make priority adjustments
 Break down as needed

© 2012

Task out the Story

 Define tasks

 Estimate the work involved

 Double check ability to commit

The Product Owner can help
in avoiding less valuable work

© 2012

Repeat
 Until the team cannot take on more
 Split stories as necessary

© 2012

Commit
 Everyone agrees the iteration is doable
 Use disagreement and uneasiness in team members to

drive out hidden risks, tasks, and issues
 Drive agreement with a fist of five

 Absolutely, no question
 I think this is good and will make it happen
 I can support this
 I’m uneasy about this and think we need to talk about it more
 Let’s continue discussing this idea in the parking lot

Managing your Tasks

© 2012

Daily Standup
 What did I do yesterday?
 What will I do today?
 What’s blocking me?

Quick

High Value

Parking Lot

For the team

© 2012

Demo
 Show off what you got “done” in the iteration
 Should be from the user’s perspective
 No slides
 No code
 Just working software

If a customer could attend your demo,
you’re doing it right

© 2012

Retrospective
 Review the process over the last iteration
 What went well?
 What went poorly?
 How can we do things better?
 Take the top 1-3 items and make sure you make

progress on them in the next iteration

Improve

© 2012

Estimating
 Identify a medium sized story that is well understood;

call it a 5
 Now estimate other stories relative to that
 Is it about the same, ½ as difficult, twice as difficult?
 Use Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21
 If bigger than that or if too hard to estimate, split the

story
 Tackle as a team; Planning poker can help

(www.planningpoker.com)

© 2012

Velocity
 Now that stories have sizes, you can track how many

points you typically get done in an iteration
 Only count points for stories that get accepted in the

iteration
 You can now use this to predict future completion

rates

© 2012

Structuring Teams
 It is preferable to have each team have the ability to

complete its work by itself
 In other words, instead of a team per component, have

teams with members who have knowledge of each
component that will need to change to deliver
something

© 2012

Divvying Things Up
 Your goal is to divvy things up so that teams are

working on items of around the same priority

Bad Good

If each team able
to get 3 blocks in
the release,
the highlighted
stories won’t
make it

By better distributing
stories amongst the
teams, look which
stories won’t make it

© 2012

Dependencies
 Approaches (go with the first one you can):

 Structure the teams so that a single team can solve the
problem end to end

 Do the work within the same iteration
 Implement the service and then use it
 Stub out the service and implement it later

 Make sure the dependent teams
(including external ones) are represented at
release planning

© 2012

Release Planning
 Kick off / Overview
 Break Out Sessions
 Review Results

© 2012

Release Planning Deliverables
 Plan for each Iteration
 Assumptions
 Dependencies
 Risks

© 2012

Release Planning Wrap Up
 Go through each iteration for each team
 Are things synched up across teams?
 Are you attacking the most important stories?
 Does the team believe in the results?

© 2012

After The Meeting
 Capture the results in your tool of choice
 Update after each iteration

© 2012

Anti-Goals of Release Planning

Release Planning is not a commitment!

© 2012

Communicating the Future
 Themes give you room to be flexible

 We know we’re going to do something in this area
 We’ll decide as we go how much

 If a customer is asking about a particular feature, you can
get into a discussion of priorities
 Well, that’s important, but we think this and this are more

important, what do you think?

 Demos are a potential opportunity to get a customer
involved

 Smaller, incremental releases generate feedback on what to
dig into in more detail

© 2012

Tracking the Release

Managing Risk
Waterfall Agile

 Time, scope and resources
“fixed”

 Changing one affects the
others as well as quality

 Manage the plan
 Try to minimize change

 Time, resources and quality
fixed

 Changing time or resources
affects scope

 Manage the priorities
 Change as you learn more

© 2012

Life in an Iteration
 Once in an iteration, scope is fixed
 Do the work in small increments
 Work closely with others
 It isn’t done until it is really done
 If it doesn’t add value, don’t do it (or minimize)
 Leave decisions to the last responsible moment

It is a team effort

© 2012

Self Organizing Teams
 The team members know how they can best

contribute
 They figure out how to divvy the work up / attack the

problem
 The scrum master facilitates and is part of the team

© 2012

Feedback is key
 Do a little
 Get feedback
 Respond to feedback by doing a little more
 Automation helps decrease time to get feedback

 Nightly/continuous build
 Unit tests
 Acceptance tests

© 2012

Agile Documentation
 Keep to the minimal responsible amount of doc

 No more than you need at any point in time
 Just enough to understand dependencies and mitigate

risks

 Do you need this now?
 If not, try to reduce or eliminate it

 Wiki’s work well for collaborative design

© 2012

Management Is Not Enough!
 Engineering practices must change

 Avoid specialization
 Keep design simple and refactor as needed (YAGNI)
 Create good automated regression tests
 Integrate frequently
 Peer review

 Consider
 Test Driven Development (or Behavior Driven Development)
 Pair Programming
 Co-location
 Dedicated team members

© 2012

Staying Releasable
 Goal: Could release after any iteration
 Reality: Ability to do this will evolve over time

 Staying releasable gives you the ability to more easily
change direction / take on new things

 It also tends to improve quality
 And predictability

© 2012

Definition of Done
 You need to define for your environment
 Definition will evolve over time
 Example:

 Unit tests written and passed
 Acceptance tests automated and passed
 User facing documentation written
 Checked in to the build

© 2012

Questions?

Walter Bodwell
Planigle

wbodwell@planigle.com
Twitter: @wbodwell
www.planigle.com

www.walterbodwell.com

