
Walter Bodwell
Planigle



An Introduction – Walter Bodwell
 First did agile at a startup in 1999
 Got acquired by BMC in 2000 and 

spent the next 8 years doing agile at 
scale

 Now providing consulting, tools and 
training to help teams get the most out 
of agile at Planigle



5 Levels of Planning Adapted from “5 Levels of Agile 
Planning” by Hubert Smits

Daily 
Standup

Iteration 
Plan

Release 
Plan

Product 
Roadmap

Product 
Vision



Product Vision
 What are you trying to accomplish?
 How is that going to benefit the business?

Daily 
Standup

Iteration 
Plan

Release 
Plan

Product 
Roadmap

Product 
Vision



Product Roadmap
 High level themes for the next few releases
 Shows progress towards strategy
 Lots of “wiggle room”

Daily 
Standup

Iteration 
Plan

Release 
Plan

Product 
Roadmap

Product 
Vision



Release Plan
 Go into next level of detail towards themes
 Get everyone on the same page
 Understand what you will likely achieve
 Balance load between the teams
 A projection, 

not a commitment

Daily 
Standup

Iteration 
Plan

Release 
Plan

Product 
Roadmap

Product 
Vision



Timing
 Release planning should occur just before the teams start 

on the release

 If teams are just forming, delay until after the teams have 
done 2 or 3 iterations (so that they understand their 
velocity)

 If the release is long (over 4-6 months), release planning 
might occur multiple times to resynch
 High fidelity for close items
 Low fidelity for items further out



Preparing for Release Planning
 Set themes
 Prepare the backlog
 Identify teams
 Divvy stories up
 Understand the issues
 Size the stories
 Define what done is
 Identify key dates



Set Themes / Investment Areas
 What are the areas we’re going to invest in for this 

release?

 Themes give you room to be flexible
 We know we’re going to do something
 We’ll decide as we go how much

 Themes are a great way to communicate the focus of 
the release without prematurely committing you to 
details



The Backlog
 Rank order things
 Each should meet I.N.V.E.S.T. criteria
 Size will vary based on how far out



Why Prioritize?



Identifying Teams
 It is preferable to have each team have the ability to 

complete its work by itself
 In other words, instead of a team per component, have 

teams with members who have knowledge of each 
component that will need to change to deliver 
something

 Don’t change the teams frequently



 Component teams provide expertise
 But limit the ability to attack the highest priorities
 And require more coordination (complexity)

Components or Features?



Divvying Things Up
 Your goal is to divvy things up so that teams are 

working on items of around the same priority

Bad Good

If each team able
to get 3 blocks in 
the release,
the highlighted
stories won’t
make it

By better distributing
stories amongst the
teams, look which
stories won’t make it



Dependencies
 Approaches (go with the first one you can):

 Structure the teams so that a single team can solve the 
problem end to end

 Do the work within the same iteration
 Implement the service and then use it
 Stub out the service and implement it later

 Make sure the dependent teams
(including external ones) are represented at
release planning



Understanding the Issues
 Keep to the minimal responsible amount of doc

 No more than you need at any point in time
 Just enough to understand dependencies and mitigate 

risks
 The right size for the problem

 Do you need this now?
 If not, try to reduce or eliminate it



Agile Architecture
 Just enough
 Refactor as you go



Estimating
 Identify a medium sized story that is well understood; 

call it a 5
 Now estimate other stories relative to that
 Is it about the same, ½ as difficult, twice as difficult?
 Use Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21
 If bigger than that or if too hard to estimate, split the 

story



Why Story Points?
 Time estimates

 Vary by person
 Encourage padding
 Tend to grow stale

 Story points
 More consistent from person to person
 Not a commitment to time frame
 Don’t change as much
 Easier to estimate relative size



Velocity
 Now that stories have sizes, you can track how many 

points you typically get done in an iteration
 You can now use this to predict future completion 

rates



Story Points Across Teams
 To get teams in the same ballpark, pick a baseline story

 Each team should understand the complexity
 Choose a medium size story
 Call it a ‘5’
 All other stories are relative to it

 Don’t compare velocity
 Used by a team to evaluate itself
 If others use it for evaluation, it will be gamed and 

become useless



Definition of Done
 Define what “Done” means for your team
 Make “Done” more stringent over time
 Definition of Done evolves as you do



Key Dates
 How many iterations?
 When do they start / stop?
 Which iterations (if any) are hardening?
 Any other dates to be mindful of?



Release Planning
 Kick off / Overview
 Break Out Sessions
 Review Results



Attendees
 Product Owners
 ScrumMasters
 Architects / Leads
 QA
 Writers
 Other Stakeholders

This is the best time to travel!



Release Planning Deliverables
 Plan for each Iteration
 Assumptions
 Dependencies
 Risks



Philosophies
 Simple Is Better

 Allows for better coverage across features
 Prevent unnecessary complexity

 If you go too simple, it will remain unused until you follow up 
with the market demanded features next release

 If you go too complex, it is very difficult to identify and 
remove the unnecessary complexity

 Leave Room To Be Agile
 No more than 70% of our time should be allocated to 

committed features



Release Planning Wrap Up
 Go through each iteration for each team
 Are things synched up across teams?
 Are you attacking the most important stories?
 Does the team believe in the results?



Is This Reasonable?
 Everyone agrees the release is doable
 Use disagreement and uneasiness in team members to 

drive out hidden risks, tasks, and issues
 Drive agreement with a fist to five

 Absolutely, no question
 I think this is good and will make it happen
 I can support this
 I’m uneasy about this and think we need to talk it out some 

more
 Let’s continue discussing this idea in the parking lot



After The Meeting
 Capture the results in your tool of choice
 Update after each iteration
 Notify of major changes to the plan



Communicating the Future
 Themes give you room to be flexible
 If a customer is asking about a particular feature, you can 

get into a discussion of priorities
 Demos are a potential opportunity to get a customer 

involved
 Smaller, incremental releases generate feedback on what to 

dig into in more detail



Prioritization Doesn’t Stop
 The product owner re-prioritizes after each iteration

 We’ve learned more about the business
 Let’s take advantage of that

 The further down the list something is, the less 
defined it will be and the less important it is to 
prioritize precisely



Questions?

Walter Bodwell
Planigle

wbodwell@planigle.com
Twitter: @wbodwell
www.planigle.com

www.walterbodwell.com


